
Back to the Supermarket. We’ll implement the code for a
checkout system that handles pricing schemes such as
“apples cost 50 cents, three apples cost $1.30”.

Let's model the various options for supermarket pricing.

Some things in supermarkets have simple prices: this can of
beans costs $0.65. Other things have more complex prices.
For example:

three for a dollar (so what’s the price if I buy 4, or 5?)
$1.99/pound (so what does 4 ounces cost?)
buy two, get one free (so does the third item have a
price?)

Bonus

To make it better, you can consider things like:

Start Date / End Date of an event
How to keep an audit trail of pricing decisions?

We'll have to implement the code for a supermarket checkout

Super Scanner

Step 1

Step 2

that calculates the total price of a number of items. In a normal
supermarket, things are identified using Stock Keeping Units,
or SKUs. In our store, we’ll use individual letters of the
alphabet (A , B , C , ...). Our goods are priced individually.
In addition, some items are multipriced: buy n of them, and
they’ll cost you y cents. For example, item A might cost 50
cents individually, but this week we have a special offer: buy
three A s and they’ll cost you $1.30 .

Item Unit Price Special Price
 A 50 3 for 130
 B 30 2 for 45
 C 20
 D 15

Our checkout accepts items in any order, so that if we scan a
B , an A , and another B , we’ll recognize the two B ’s

and price them at 45 (for a total price so far of 95).
Because the pricing changes frequently, we need to be able to
pass in a set of pricing rules each time we start handling a
checkout transaction.

The interface to the checkout should look like:

co = CheckOut.new(pricing_rules)
co.scan(item)
co.scan(item)
...
price = co.total

