
1

Thread Synchronisation

• common resources
– files
– printers, scanners, robots...
– shared data, global variables

• multiple threads
– access common resources
– wait if resource is not ready yet

Where is the problem?

What is the solution?

Java’s Solution: Monitors

Historical note: Anthony Hoare, 1970s.
A monitor is an object.
Monitor methods can be used by only one
thread at a time.
If a thread calls a monitor method of a
monitor that is currently engaged then the call
blocks, the thread has to wait.

Which Monitor Methods?

• commonest forms: the access modifier
synchronized turns a method into a
monitor method of its object.

• alternative: the statement
synchronized (expr) { code }

turns the code into a (parameterless)
monitor method of the object the expr
evaluates to.

Example: Mutable Variable
public class Variable {

private Object local;

synchronized public Object getVal()

{ return local; }

synchronized public void putVal(Object a)

{ local = a; }

}

2

Explanation

• the methods getVal and putVal are monitor
methods of any object of class Variable

• we cannot run two getVals, or two putVals or one
getVal and one putVal on the same object in
parallel

• however, putVal of one object is not in conflict
with a putVal of a different object - different
objects, different monitors!

Conflict Resolution

What if two or more threads request a
monitor?
One gets it...(the monitor’s lock)
The other threads block and have to wait...
The wait is not necessarily fair, i.e. it is not
always a proper queue.

Other Methods

What if... some methods are synchronized
and others are not?
The ones which are not simply fail to be
monitor methods.
Anyone can call them, any time.

Surrender!

There is a situation which is not adequately dealt
with so far.
It could happen that the execution of the monitor
method reveals that there is a problem.
Another thread would need to provide a resource
and that has not happened yet. So, the thread has
to surrender the monitor, block, and await the
resource.

Wait/Notify

• any Java object has methods wait/notify
• these can only be called when in possession of

the objects monitor lock
• the wait method blocks and releases this lock

(and only this lock)
• the notify method alerts waiting threads;

they attempt to regain the lock after which
they continue

Example
class Buffer {

private Object local=null;

public synchronized void put(Object a)

{ local = a; notify(); }

public synchronized Object get()

{ if (local==null) wait();

Object result=local;

local=null;

return result;

}

}

3

Explanation (i)

• this is a buffer carrying one object
• put overwrites whatever is in the buffer
• get tries to fetch a non-null element from

the buffer; it blocks when the current entry
is null, otherwise it fetches the object and
resets the buffer content

Explanation (ii)

• notice that several get-threads may be
waiting

• if a put happens then the notify call will
– awake one of the waiting threads which

subsequently will proceed
– do nothing if nobody is waiting

Race Hazard

Sadly, the code is not 100% correct.
It would be if lock-queuing were following
some particular fair strategy - but we cannot
rely upon that.
There is a scenario in which the buffer does
not behave as wanted.

Scenario

1. get request is blocked (buffer empty)
2. put call fills buffer, thread is woken up and is

runnable (but not yet running)
3. a second get request queues for the lock
4. it is given the lock instead of the first thread; it

clears the buffer and releases the lock
5. now the first get resumes and sadly retrieves

null

Modification
class Buffer {

private Object local=null;

public synchronized void put(Object a)

{ local = a; notify(); }

public synchronized Object get()

{ while (local==null) wait();

Object result=local;

local=null;

return result;

}

}

Proper Buffer

In a proper buffer, put should block as well,
i.e. if the buffer is already filled.
Not too hard, is it?

4

Proper Buffer?
public synchronized void put(Object a)

{ while (local!=null) wait();

local=a; notify(); }

public synchronized Object get()

{ while (local==null) wait();

Object result=local;

local=null; notify();

return result;

}

No, another race hazard!

1. get1 is blocked
2. get2 is blocked

5. get1 succeeds, wakes 2
6. get2 is blocked

3. put3 succeeds, wakes
1
4. put4 blocks

7. If no further requests come, the system is dead with a put and a
get waiting simultaneously!

Solution

Use notifyall() !
(instead of notify)

Not ideal, is it?

It does not look nice to notify both consumers
and producers if only one of the two groups is
affected by the action.

Cannot we organise it in such a way that
consumers alert producers and vice versa, but
that they leave their own kind undisturbed?

(Failed) Attempt
class Buffer {

Object inq=new Object();

Object outq=new Object();

public synchronized void put(Object a)

{ while (local!=null)

synchronized(outq) {outq.wait();}

local=a;

synchronized(inq) {inq.notify();} }

...

}

Deadlock

It does not work, it deadlocks.
The problem is: the wait only surrenders the lock it
is waiting on, so this time the thread will keep the
lock of the buffer itself, preventing other threads
from accessing the buffer.
If we drop the synchronized modifier from the
method then the deadlock goes away, but so does the
security.

5

Solution
public void put(Object a){

synchronized(outq) {

synchronized(this) {

if (local!=null) wait();

local=a;

notify();

}

}

}

Solution (ii)
public Object get(){

synchronized(inq) {

synchronized(this) {

if (local==null) wait();

Object result=local;

local=null;

notify();

return result;

}

}

}

How does this work?

• in order for put to succeed it needs to be in
possession of both the locks for this and outq

• if the buffer is full it relinquishes the lock for
this but keeps the outq lock

• thus further put requests are bounced off, they
do not call wait, they just queue on outq

• get requests can succeed and notify

Notice

• no more while’s, back to if’s
• at most one thread is waiting (as a result of

wait) at any one time
• the waiting put thread cannot be overtaken

by another put thread (as it fails to
relinquish outq before completion)

• being overtaken by a get thread is harmless

Conclusions

Monitor synchronisation is rather subtle.
It does not scale very well.

Things can go wrong - no system checks for
deadlocks or race hazards.
Use threads with caution!

