
1

(Lack of) Parallelism

• Standard programming in imperative 
programming languages is intrinsically 
sequential: first do this then that then that.

• OO does not really change that, except 
perhaps if objects run their own code, e.g. 
Java initialisers.

• In Java, this is not parallel either.

(non-parallel) examples

static variables at class level:
static final int longcomp=abc.call();

static initialisers, at class level (just as methods):
static{ System.out.println("I’m running"); }

instance initialisers, at class level; as above, 
without the keyword static.
All these have well-defined execution scenarios.

Why parallelism?

• interact with real-life parallelism, e.g. mail 
server, multi-user OS, etc.

• minimalism: do not enforce sequential 
order unless the problem requires it

• increase component-independence - one 
window crashes, the program carries on

• exploit hardware

Parallelism in Java

• a process in Java is called a thread
• threads are objects of class Thread
• threads can be started and then run (fairly) 

independently [often rather unfairly]

• we can wait for threads to finish
• we also talk about the main thread of 

control, although it isn’t a Thread object

How?

• we typically write a subclass of the class 
Thread (java.lang.Thread)

• this subclass needs to implement the method 
public void run() - the code of the thread

• we create a thread object
• we fork off the thread by calling its start()

method - this then executes the run() method
not in the Thread constructor, please!

Why?
...don’t we just run the run() method?
We can, it just is an ordinary method of an 
ordinary object.
But: it would not be executed in a separate 
thread, but in the thread in which we call.
In particular, start() terminates quickly as it 
only forks off a new thread; run() runs to 
completion.



2

java.lang.Thread (selection)

void start();

final void join();

static void sleep(long millisecs);

static void yield();

final boolean isAlive();

final void setPriority(int prio);

Thread (Runnable r);

Example
class Devil extends Thread {

Socket soul;

Devil (Socket s) { soul=s; }

public static void main (...) {

try { ServerSocket losers;

losers=new ServerSocket(666);

for(;;){

Devil me=new Devil(losers.accept());

me.start();

} } catch (IOException e) {...}

}

...continued
public void run() {

try { PrintWriter out;

out=new PrintWriter(soul.getOutputStream());

out.print("You must come and watch me");

out.println(" in our Morris dancing group");

...

out.close();

soul.close();

} catch (IOException e) {...}

}

Genuine Parallelism

So when we start a thread, it runs physically 
parallel to the other threads?
It could be. If we have sufficient processors 
and our virtual machine makes use of them...
More likely:

Time sharing
Hugging a resource

Example
class MMMMMMMMMM extends Thread {

private String message;

public void run() {

for (int i=0; i<10000; i++)

System.out.println(message);

}

MMMMMMMMMMM (String m) {

message = m; }

}

...continued

public static void main(...) {

MMMMMMMMMM a,b,c;

a=new MMMMMMMMMM("hello");

b=new MMMMMMMMMM("world!");

c=new MMMMMMMMMM("42");

a.start(); b.start(); c.start();

a.join(); b.join(); c.join();

}



3

Side Remark

Why are there the three join calls at the end?
The main thread of control should be the last
to terminate. If it runs out of things to do, it 
should wait for the other threads to finish.
Otherwise, the command shell in which you 
run the Java program may fail to recognise
that the program has finished - when it has.

How does this behave?

on my PC
– first 262 lines hello
– then 18 times 
world! followed by 42

– then 743 times world!
– etc. (no pattern)

on myrtle
– 997x hello
– 10000 lines 42
– 2998 lines world!
– 9003 lines hello
– 7002 lines world!

that was it!

Question

What would the output have been, had we 
called a.run() etc. instead of a.start()
etc.?

Unfair threads

if threads can be scheduled unfairly, how do 
we ever get behaviour that resembles 
parallelism?
none if we do not need it, i.e. if we can run the 
threads one after the other
otherwise threads interact with other threads 
they may have to wait for them and block

Example: Thread with result
class Computation extends Thread {

private Object result;

public Object getResult()

{ return result; }

public void run() {

// something complicated
// that stores something in result

}

}

User

class User extends Thread {

public void run() {

Computation c=new Computation();

c.start();

// do our own stuff
c.join(); // wait for c to finish
use(c.getResult());

} }



4

Problems

• what if c computes a result on the hoof, i.e. without 
terminating?
– how would we know the result is ready to be collected?

• what happens if the user thread calls c.getResult()
without a preceding c.join()?

• what happens if the field result is not defined as 
private and we access it directly?

Answers and Half-solutions

• we could implement a “ready to be collected”
method; but how do we make this safe?

• the user has to exercise restraint - just put 
recommendations of good usage into the doc

• different threads accessing the same field directly is 
problematic; to avoid being outwitted by compiler 
optimisations use volatile [better: do not! keep the 
fields private!]

SUN’s advice on threads

Don’t use them!

...unless you really have to!

For threads with result they also provide the 
class SwingWorker (not in the jdk). This uses 
some synchronisation features.


